Aware for Rare: Shortage of Genetic Specialists & Dealing with the established standards of Clinical Practice - PART IV

Aware for Rare: Shortage of Genetic Specialists & Dealing with the established standards of Clinical Practice - PART IV

In this four-part series, we examine the various challenges faced by patients and families affected by rare diseases. We also interview clinicians, researchers, and the advocacy community at large to understand their perspectives on bottlenecks in rare disease diagnosis and treatment.

Part 4 of the series discusses the shortage of genetics specialists, limited medical knowledge, and the challenge of integrating extensive information.

Read More

Aware for Rare: Exploring Current Challenges in Rare Disease - PART III

Aware for Rare: Exploring Current Challenges in Rare Disease - PART III

In this four-part series, we examine the various challenges faced by patients and families affected by rare diseases. We also interview clinicians, researchers, and the advocacy community at large to understand their perspectives on bottlenecks in rare disease diagnosis and treatment.

Part 3 of the series details some of the other challenges in the rare disease space: continued confusion and not knowing even after diagnosis, scattered rare disease communities, and getting the attention of governments to intervene.

Read More

Aware for Rare: Exploring Current Challenges in Rare Disease - PART II

Aware for Rare: Exploring Current Challenges in Rare Disease - PART II

In this four-part series, we examine the various challenges faced by patients and families affected by rare diseases. We also interview clinicians, researchers, and the advocacy community at large to understand their perspectives on bottlenecks in rare disease diagnosis and treatment.

Part 2 of the series discusses options if Next Generation Sequencing does not provide a diagnosis as well as the lack of effective treatments and therapies to cure rare diseases.

Read More

All of Us Research Program

All of Us Research Program

It’s been 16 years since the first human genome was sequenced. That undertaking took almost 15 years, cost billions of dollars, and revolutionized genetic research. Since then, new sequencing technologies have led to lower sequencing costs and quicker turnaround times. Sequencing a genome today takes weeks rather than years and costs thousands, not billions.

Read More

Aware for Rare: Exploring Current Challenges in Rare Disease - PART I

Aware for Rare: Exploring Current Challenges in Rare Disease - PART I

In this four-part series, we examine the various challenges faced by patients and families affected by rare diseases. We also interview clinicians, researchers, and the advocacy community at large to understand their perspectives on bottlenecks in rare disease diagnosis and treatment.

Part I of the series discusses the challenges of the limited access to Next Generation Sequencing.

Read More

Talking to kids about genetic differences- Three great books to share

Talking to kids about genetic differences- Three great books to share

It can be difficult to explain complicated genetic topics to children with chromosomal differences, or to discuss a child’s uniqueness with family members, siblings, or even to curious strangers. Finding the right words can be even harder if your child is newly diagnosed, or if very little is known about what to expect in the future.

 The books summarized below address uniqueness, inclusion, even genetic/chromosomal differences. These frank, but endearing stories can better arm parents and caregivers with the language to talk about their child’s differences.

Read More

A Rare Genomics patient is diagnosed using Genomenon’s Mastermind Search Engine

A Rare Genomics patient is diagnosed using Genomenon’s Mastermind Search Engine

Los Angeles, CA; February 27, 2019: Getting a diagnosis for a rare disease is a long and often painful journey that can take an average of five years and hundreds of doctor visits. Sometimes, the answer never comes; conventional diagnostics does not always provide a diagnosis for diseases that are only found in one in a million or one in 10 million people. Because most rare diseases are genetic in nature, genomic DNA sequencing can be used to provide answers that conventional approaches cannot.

Most families affected with rare diseases are under financial strain, making access to genetic sequencing technologies difficult. Rare Genomics Institute, a non-profit patient advocacy group, meets these patients at the end of their diagnostic odyssey – when all other means of diagnosis have failed and when financial resources are no longer available to continue the diagnostic process. Rare Genomics has created an ecosystem of leading technology partners and genetic experts from top research institutions around the world to give patients access to world-class genomic sequencing, data analysis and interpretation services. Often, Rare Genomics works with their partners and volunteer experts to re-analyze cases that have hit a dead end. 

Read More

Bridging Health and Social Care for Rare Disease Day 2019

Bridging Health and Social Care for Rare Disease Day 2019

Rare Disease Day is held annually on the last day of February to raise awareness about rare diseases. This effort is targeted at the general public as well as those who influence legislation, research, and healthcare decisions that affect rare disease patients. The first Rare Disease Day took place on February 29, 2008. Since this day only occurs every four years on a leap year, it signifies the rarity of rare disease.

The theme of this year’s Rare Disease Day is “bridging health and social care”. This addresses the need for better coordination of all aspects of rare disease care including medical, social, and support services. The theme sheds light on how performing daily tasks can be difficult for rare disease patients and their caretakers. Activities such as cooking a meal, shopping, and cleaning the house can be difficult or impossible for someone with a disability.

Read More

How The Orphan Drug Act Opened the Door for Rare Disease Research

How The Orphan Drug Act Opened the Door for Rare Disease Research

Drug research and development is a complicated process that the average person has little influence over and rarely thinks about. This is not the case for rare disease patients. Thoughts about how drugs are developed and why this process is so expensive are sure to come up more often for those affected by a rare disease. It can be a source of frustration since many pharmaceutical companies are reluctant to develop treatments for a rare disease.

Read More

Giving Tuesday 2018 is Just Around the Corner

This Giving Tuesday, we hope you will consider making a donation to the Rare Genomics Institute (RG).

Email 1 Image.png

We were able to complete 62 projects which includes whole genome sequencing for over 180 individuals. Our latest Patient team called the Rare Genomics Task Force (RGTF), a consultation platform that allows patients to have their questions answered by experts for free, provided consultations for over 200 patients.

Here at RG, we’ve had a busy year! Our volunteers donated over 18,000 hours of their time to help rare disease patients. We want to keep our momentum rolling this year and in years to come. Since RG is completely volunteer-run, the only way we can do this is with a donation from you.

A donation to RG will help a rare disease patient in need. Our patients often have no other options for access to genetic sequencing which can reveal the cause of their disease as well as potential research avenues or treatments.

Thank you for your generous support,

Jimmy Lin, M.D., PhD, MHD

President/CEO, Rare Genomics Institute

P.S. If you are buying holiday gifts on Amazon this year, please consider using our AmazonSmile link. At absolutely no additional cost to you, 0.5% of your purchase amount will be donated to RG. As a non-profit, volunteer-run organization, every cent really does help rare disease patients. Just click on the following link and then continue shopping as usual:

Rare Genomics is featured in the German Documentary, Medical Research on the Move

Last month the Nonfiction Society featured Rare Genomics Institute (RG) in a science documentary, which aired in German public television on September 13th, 2018. The documentary highlights “Medical research on the move, where organizations take initiative instead of blaming failing healthcare gaps or the pharmaceutical industry.” It is completely in German, but below is a synopsis of what RG contributed.

The documentary began by talking about the success of the Ice Bucket Challenge for ALS. It garnered over $100 million dollars of donations within a month of their campaign. During that time frame, over 28 million people joined the challenge by posting, commenting or liking a challenge post, Facebook said. Famed leaders and celebrities including Bill Gates, Charlie Sheen and Cristiano Ronaldo produced videos with about 16 million in views on YouTube at the time.

Through interviews with scientific experts worldwide, the documentary aimed to show the novel ways of funding medical research. They highlighted RG’s efforts for patients with rare diseases and interviewed Romina Ortiz, COO and VP of Patient Advocacy, to learn more about the Amplify Hope Study and current efforts by RG.

Read More

Disorder: The Rare Disease Film Festival Returns to Boston

This September, The Rare Disease Film Festival returned to Boston for its second year. The event featured twelve films and trailers for future projects. Film topics were remarkably diverse, ranging from the charismatic account of an Epidermolysis Bullosa patient (This is Michelle) to a Hollywood production written by a young girl with mitochondrial disease (The Magic Bracelet).

A major theme of the event was how storytelling can give those struggling with a rare disease a powerful voice. Nicole Boice, founder of Global Genes, said that “storytelling can influence, impact, and inspire people to take action”.

Read More

Pathway To Solving A Mystery

I have been a Genetics Analyst with the Rare Genomics Institute for over a year. The work that analysts like myself do is challenging, but we are aware of the impact and significance of our findings to the affected families. One of the services ( that we provide is to help identify mutated genes that are causing the patient’s symptoms, and if possible give a name to the disease. Our cases are typically undiagnosed where sequencing data is available.

Genome sequencing of the patient, siblings, and parents is carried out externally by one of our several partners, or the patient brings the sequence from previous analysis so we can re-interpret it. Whole Exome Sequence (WES) refers to sequencing only the DNA that encodes proteins, as opposed to whole genome sequencing (WGS), which includes non-protein encoding sequencing.  WGS and WES are preferred technologies over the more standard microarrays for diagnostic purposes. We currently do our analysis with WES exclusively and are planning to incorporate WGS in the near future.1

Read More

Superstar Sunday: The Story of Mae

Mae is a beautiful, caring and creative 8 year old girl who loves dancing, swimming, baking and all things scientific. She has a sister nearly two years older than her.

We first noticed something wasn't quite right with Mae at around 2 years old when she was unable to jump or climb stairs easily as a toddler. Initially we just thought she had muscle weakness and weren't concerned at all. After doing the routine checks with the GP we ended up being referred to a physiotherapist to help develop 'strength' when she was 4 years old. After only 6 weeks the physio rang me to say that she thought I needed to take Mae to a pediatrician to have her assessed; I still, had no idea that anything could be 'wrong' with her. However, after one hour with the doctor, she told me that Mae had a muscle myopia and that she needed to be under the care of a neurologist and a number of other specialist.

Read More

Living with Issacs’ Syndrome, a Rocky Story

A walk in the evening had left senior investment banking executive Tim Johnson in immense discomfort.

The 38-year-old based in Mumbai described a stabbing pain that had developed locally in the lumbar region and had extended to his right leg, which began cramping continuously. The next morning, the pain persisted and was accompanied with stiffness that made movements difficult. Johnson decided to consult an orthopedic specialist. It was February of 2016.

After being put on drugs with little to no improvement, Johnson consulted a gastroenterologist. He was then referred to a neurologist, and it was at this stage that Johnson received his first diagnosis of polymyositis, an inflammatory muscle disease.

Johnson’s month-long stay in the hospital involved running test after test to find a definitive diagnosis and careful deliberation of treatment. He was barely able to walk and dependent on painkillers taken three times a day. A month in the hospital left Johnson with no other choice but to resign from his investment banking work, which could not be left unattended to for so long.

By March 2016, Johnson’s team of medical experts had completed a thorough motor examination that had revealed average muscle status with wasting, stiffness in the upper limbs, excess weakness with spontaneous gross fasciculations in both arms and in some areas of the face. A nerve conduction study and EMG confirmed a final diagnosis—Isaacs’ Syndrome.

Also known as neuromyotonia, Isaacs’ Syndrome is a rare, muscle function disease currently affecting an estimated 100 to 200 people worldwide.

“It being a rare disease, the costs involved were very, very high,” said Johnson, who now works as a financial consultant. “In Indian Rupees, my bill was Rs 20 Lakhs [for hospitalization alone, about $31,000]. The rest of the costs, like travelling, were separate.”

Because the disease is so rare, Johnson has yet to meet anyone else with Isaacs’ Syndrome. But, he says he is part of a Facebook group for people suffering from it worldwide. Here, individuals can exchange ideas and share their stories.

“To be honest, I have been dealing with it alone,” said Johnson, who plans on posting in the Facebook group more often. “I am searching for a permanent solution and [trying] not to continue with symptomatic treatment only.”

Such symptoms that Johnson still deals with on a daily basis are commonly experienced among others with the disease and can occur when the peripheral nerves outside of the brain and spinal cord become easily excited, causing the muscle fibers they synapse with at the neuromuscular junction to continuously contract.1 This hyperexcitability leads to involuntary and constant muscle activity producing stiffness, cramping, and delayed relaxation, all of which can result in difficulty walking as well as fatigue.3

In a subset of cases, other symptoms may include excessive sweating, insomnia, seizures, constipation, and personality change, which may point to Morvan syndrome.3

The specific etiology of Johnson’s Issacs’ Syndrome remains unknown, but in many cases, it is either acquired or inherited genetically. In the case of acquired neuromyotonia, there is evidence suggesting the role of certain antibodies perturbing the normal functioning of voltage-gated potassium channels.2 These antibodies have been detected in 30-50% of patients.7 Neuromyotonia can also be triggered by an altered immune response to a neoplasm, or tumor, and is paraneoplastic in up to 25% of patients—often signaling potential thymus or lung cancer.7

While some cases of Isaacs’ Syndrome are acquired and may predate cancer, Isaacs’ Syndrome can be inherited as well. In 76% of patients with autosomal recessive axonal neuropathy with associated neuromyotonia (ARAN-NM), mutations in the histidine triad nucleotide-binding protein 1 (HINT1) gene on chromosome 5q31.1 were identified.4

“As far as I can recollect, there were no genetic tests performed,” Johnson wrote in an email. “PET scan was performed, and it showed no traces of cancer. [My] clinical manifestation of Isaacs’ Syndrome was typical.”

Today, Johnson is still managing his symptoms, which continue throughout the day and even during sleep. However, with a balance of medication, meditation, yoga, and walking, his symptoms have reduced in intensity. Aside from closely monitoring any changes due to medication or food, Johnson says he tries not to think about his disease too much.

Instead, he strives to keep a positive outlook on life by watching inspirational movies “again and again and again,” including the Rocky series.

“I have this quote: ‘Going in one more round when you don’t think you can – that’s what makes all the difference in your life’ by Rocky Balboa in my room,” Johnson said. “I see it first thing early morning and the day is history.”

Johnson says he views his disease both as an opportunity and responsibility to connect with more people and organizations, create awareness, and to learn more about himself.

“I wish and urge people to create the power of awareness and be a part of any social expedition to help others,” Johnson said. “Because of the position that I’ve been put in, I think it’s important to use my voice and people’s support to do as much as I can.”

The patient's name has been changed to maintain confidentiality


  1. UpToDate -Paraneoplastic syndromes affecting peripheral nerve and muscle, Josep Dalmau, MD, PhD and Myrna R Rosenfeld, MD, PhD
  2. Newsom-Davis J, Mills KR. Immunological associations of acquired neuromyotonia (Isaacs' syndrome). Report of five cases and literature review. Brain 1993; 116 ( Pt 2):453.
  3. (
  4. Ahmed A, Simmons Z. Isaacs syndrome: A review. Muscle Nerve 2015; 52:5.
  5. Tim’s pdf document
  7. Skeie, G. O., Apostolski, S., Evoli, A., Gilhus, N. E., Illa, I., Harms, L., Hilton-Jones, D., Melms, A., Verschuuren, J. and Horge, H. W. (2010), Guidelines for treatment of autoimmune neuromuscular transmission disorders. European Journal of Neurology, 17: 893–902. doi:10.1111/j.1468-1331.2010.03019.x

Rare Genomics earned the Platinum Seal of Transparency from GuideStar


Great news! Rare Genomics Institute just earned the Platinum Seal of Transparency from GuideStar, the world’s largest source of nonprofit information. By sharing these metrics, we’re helping the sector move beyond simplistic financial ratios to assess nonprofit progress. We’re proud to use GuideStar Platinum to share our full and complete story with the world. To reach the Platinum level, we added extensive information to our Nonprofit Profile: basic contact and organizational information; in-depth financial information; quantitative information about goals, strategies, and progress toward our mission. To learn more about GuideStar Platinum, go to

Personalized Medicine and Rare Disease

For those with a rare disease but without a diagnosis, almost all medicine is “precision medicine.” Whatever drugs or treatments they take are flexible if the patient or their doctors think that the symptoms could be treated with better drugs. In many cases genome sequencing allows for more specific and personalized treatments, and precision medicine has many applications.

In cancer treatment precision medicine means changing the drugs used in chemotherapy not only based on the type of cancer, but based on the mutations that make the cancer dangerous. In drug development, precision medicine means finding new drugs that act as “keys” to certain “locks” in the body. In someone with a rare disease, a diagnosis could lead to a life-changing treatment. But for many, science has not yet found a cure.

Without knowing the cause of the disease, it can be risky to decide which treatments to try on a patient. Sometimes, patients and doctors have no choice but to guess and check. Often patients and their doctors go through the complicated process of reverse engineering a treatment based on whether drugs provide relief or not. For example, if your muscles don’t function properly, there could be many things wrong at the cellular level. Drugs that target the nerve interacting with the muscle might not work, but drugs that target the muscle cells might. With this information, you know a little bit more about the disease, but it can months or years to settle on an optimal treatment with this method.

For some patient’s with rare diseases, genome sequencing opens the door for treating the exact cause disease, not just the symptoms. Continuing the example from above, something as complicated as your muscles could have dozens of reasons for not working properly. If a diagnosis pointed to a malfunctioning protein, treatment could be targeted around that protein. This approach of finding targetable defects has been used successfully in cancer patients.

Precision medicine is being increasingly utilized in cancer treatment. Doctors may request that genome of someone’s tumor be sequenced, to see if a silver-bullet medication is available. This would allow them to avoid using chemotherapy. Cancer is caused by genetic mutations, so sequencing can give doctors important information about how the cancer might develop and behave with certain treatments.

Research into cancer genomes is at the forefront of modern efforts to study and cure cancer. Once sequenced, the mutations in a patient’s cancer can be compared to those in a large database built by researchers. This could yield insight into treatment; some cancer drugs work better against specific mutations, and some treatments are ineffective for similar reasons. If applicable, the chemotherapy doses, timing, and even the drugs involved can be adjusted for the best results.

For some types of cancer, the risk of getting a tumor is hereditary. Genes that normally suppress tumor growth can be mutated, and passed on each generation. Genome sequencing can reveal inherited mutations such as these. Especially for those with a prominent family history of a certain cancer, sequencing can help a patient make informed decisions about their lifestyle. These patients will have informed discussions with their doctors about the prohibitive measures they should undertake, and what they would want in the event that they do get cancer. Often patients who know that they are at risk will have frequent screenings for tumors and stay away from habits like smoking, which can further increase their risk.

Another aspect of precision medicine is drug development. Developing new drugs is very difficult, expensive, and time consuming. Researchers might go through millions of compounds before finding a very specific “key” to a target enzyme’s “lock.” Even when this search is aided by computer modeling, which shows scientists the shape of the enzyme and possible drug compounds that could fit inside, finding even one possible drug is a daunting task.

Once a research team finds a few compounds that can block the targeted enzyme, they are tested for safety, and eventually are given to humans in a clinical trial. This development process takes a lot of time and resources as tests slowly scale up in size from a petri dish to a human being. After years of these tests the drug may go to clinical trial, where patients can sign up to participate in a study of the drug’s effectiveness. Years and many more tests after this the drug may get government approval and released to the general public. If the drug is safe, and works well, it may be approved for clinical use by the FDA.

Some of the bottlenecks for precision medicine include the cost, as well as privacy concerns. These designer drugs are usually only effective for a small cohort of patients, so to recover costs put into developing the drug, a pharmaceutical company may charge much higher prices than for other medicines. Also, like other health data, genetic information is private information, so security must be maintained for all patients.

While Rare Genomics mainly helps people get their exomes sequenced, they also seek to form communities of patients with rare diseases to share their experiences and scientific information. Along with other partners, RG makes information more accessible to patients with rare diseases and their families and seeks to support them post-diagnosis through programs like RareREACH and Rare Share.

Precision medicine was a science fiction goal of the future a short time ago. Today the practice helps countless patients receive higher quality care. With genome sequencing, precision medicine has expanded its reach and shown its potential, and with new technologies constantly in development, I wouldn’t be surprised if it could do even more.



Genomics and the Genetic Revolution

Rare diseases are difficult to diagnose. Years of tests, even targeted genetic tests, could give negative or inconclusive results. If something is wrong with your body then something might be wrong with the proteins that make it run. If something is wrong with your proteins then something is likely missing or added or replaced in your genes. But - how do you find out what that is?

One of the only ways to find a one in three billion “letter” difference in the books of your chromosomes is through genome sequencing. Relatively, genome sequencing hasn’t been around for very long.

DNA sequencing hasn’t been around for very long either.

In the 1970’s the first DNA sequencing tools were developed, and using a gel base, charge differences, and plenty of copied DNA strands, a computer could be used to calculate the sequence of nucleotides present on a short section of DNA.

This incredibly powerful tool allowed scientists to gather exact information about genes instead of just making very educated guesses. Still, improvements were needed. When DNA sequencing became available scientists predicted a world of personalized medicine and gene therapy, but up until 2003 even the most optimistic considered the predictions science fiction.

Public interest in genome sequencing picked up during the Human Genome Project in the 1990’s, a U.S. government initiative like the Apollo moon missions. The project sought to work with the best geneticists around the world so they could sequence the first full human genome.

The first genome fully sequenced was of a bacteriophage, an organism so small that it is just a pocket of protein with DNA inside. That genome was about 5,000 “letters” long, and sequencing was completed in 1977.

To put this in perspective, the calculations done to first land a man on the moon were done on slide rules, by hand. That restriction would make the human genome project nearly impossible.

Computing is the lifeblood of genome sequencing. The rise in efficiency of sequencing and reduction in cost is proportional to the rise in computing power. During the human genome project from 1990 - 2003, the internet took off, the .com boom took hold of the economy, all while amazon, eBay, and google were just startups working out the right formulas. In the midst of this rapid development computers were used to catalog and interpret the billions of nucleotides in the human genome.

The first cellular organism’s genome sequenced was the H. Influenza bacteria in 1995. The genome was one million base pairs long. In 1996, the first eukaryotic genome, a single celled organism with 12 million base pairs, was sequenced, and in 1998 the first animal genome, a nematode worm, was sequenced.

Nine years after scientists set out to sequence the entire human genome, the first human chromosome was sequenced.

By 2003 the Human Genome Project was completed. It had cost 2.7 billion dollars and took 13 years to sequence the full three billion base pairs. Still, the project was both under budget and ahead of schedule by two years. Today, 99% of a person’s genes can be fully sequenced for a price of $1,000, and can be completed in less than 24 hours.

Since the rapid growth in genome sequencing technology, the time needed to analyze the large amounts of data is now the barrier. For genetic diseases, especially rare ones, there is often only one “letter” difference between a healthy gene and a dysfunctional one. Imagine getting a textbook on everything you want to know, but it’s written in a foreign language. The massive amount of data provided by genome sequencing is a boon to science, but only when it can be interpreted.

Personalized medicine and diagnostics for genetic diseases were always a goal for genome sequencing. Before that could become a reality, the cost and time spent on sequencing had to come down. This was accomplished with the rise in computing and a more selective sequencing approach, looking at only the exome, which contains the protein coding sections of the genome. Sequencing finally made its way into the clinic in 2010, and the occasional sequencing of cancer genomes to allow for targeted treatments began even earlier.

While the cost of sequencing itself has gone down significantly, the price tag doesn’t include the many hours that are spent by specially trained geneticists to find a diagnosis. Human analysis, even aided by a computer, has always been a bottleneck of time and resources in genome sequencing.

The Rare Genomics Institute was founded in 2011. Rare Genomics connects families to research institutions and seeks to help families of rare disease patients crowdfund the resources needed for exome sequencing. By furthering the reach of genetic testing, RG helps to make genome sequencing more accessible to those in need. By expanding the reach of genetic testing, the boundaries of medicine are pushed along the lines of the “science fiction” goals set out before DNA sequencing was even available. I wouldn’t be surprised if those “science fiction” goals of genome sequencing were right around the corner.

Allyson "Ally" Lark - October Rare Bear

Ally Rare Bear.jpg

Allyson “Ally” Lark celebrated her 6th birthday at the end of August. Her family hails from Manitoba, Canada, approximately three-and-a-half hours away from Winnipeg by car. As in the photo with her Rare Bear, Ally is a happy kid. Her mother Madelaine “Leni” Lark describes Ally as an, “energetic, kind, spunky, beautiful, lovely little girl” whose likes include “horses, penguins, music, dancing, spending time with her big sister Bethany and the rest of her family.”

Ally has also been diagnosed with some physical conditions, which include Global Developmental Delay (GDD), Hypotonia and Soft Neurologic Signs (SNS). By utilizing genomic sequencing, it is the hope that Ally’s family can find more answers concerning the details of Ally’s conditions. Ally’s genetics and metabolism doctor (Dr. Patrick Frosk of the Children’s Hospital Research Institute of Manitoba), posits that Ally’s physical features are indicative of a metabolic disorder. Though genetic testing has not yet yielded a specific name for the disorder that Ally has, it is the hope of Ally’s family that as new developments and discoveries are made, Ally’s genetic information may be referenced and a more definite diagnosis may be reached soon.

A frustrating aspect of receiving the diagnoses that the Larks did when Ally was just two years old is the uncertainty of the developmental potential of their child. By contacting the Rare Genomics Institute and having sequencing performed, it is the hope that at least some of that uncertainty can be removed.

Ally's mother Leni described receiving Ally’s diagnosis, “we were very scared as her future at that point was unknown. We did not know what her developmental potential would be, and we did not know what to do, or where to start.”

Ally’s condition is a recognized disability in Canada. However, living nearly four hours from the nearest city has impacted the ability of the Larks to get the one-on-one care their daughter needs. Leni notes, “Resources (here) are so minimal for kids with disabilities. It is up to families and schools/daycares to provide therapies. This is frustrating because we are not able to access crucial resources for Ally as much as we would like, particularly speech therapy and PT…Despite all of this, Allyson has made tremendous gains!”

Like many of us, Ally does not enjoy going to the doctor. But on Boxing Day 2016, her mother contacted the Rare Genomics Institute in an attempt to get Ally the care she needed through the use of whole genomic sequencing. Ally did not qualify for sponsorship of this kind of genetic testing in her home province. However, the Rare Genomics Institute was happy to help the Lark family. Having been selected to receive Whole Exome Sequencing for their daughter, the Larks saved out-of-pocket costs that could have totaled more than $20,000.

The Lark’s experience with the Rare Genomics Institute has been a positive one. Though there is no answer at present as to why Ally has a developmental delay, her mother encourages all families in need of sequencing to reach out to Rare Genomics. Leni stated, “I would have regretted passing up this opportunity… (Rare Genomics is) great to work with! I was worried there would be a lot of red tape to go through as we are located in Canada and Rare Genomics is an American agency, but things went so smoothly.” The family’s plan now is to continue supporting their daughter any way they can. We at the Rare Genomics Institute are proud to have been a part of that support. If you or someone you know could benefit from whole genomic sequencing, please reach out to the Rare Genomics Institute via the links on this webpage.

Daryl Velez